Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.533
1.
Physiol Res ; 73(2): 189-203, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710051

This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.


Neuroacanthocytosis , Vesicular Transport Proteins , Humans , Animals , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Neuroacanthocytosis/metabolism , Neuroacanthocytosis/genetics , Neuroacanthocytosis/physiopathology , Neuroacanthocytosis/pathology , Mutation , Lipid Metabolism/physiology , Lipid Metabolism/genetics
2.
BMC Cancer ; 24(1): 571, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720279

BACKGROUND: Glycometabolism and lipid metabolism are critical in cancer metabolic reprogramming. The primary aim of this study was to develop a prognostic model incorporating glycometabolism and lipid metabolism-related genes (GLRGs) for accurate prognosis assessment in patients with endometrial carcinoma (EC). METHODS: Data on gene expression and clinical details were obtained from publicly accessible databases. GLRGs were obtained from the Genecards database. Through nonnegative matrix factorization (NMF) clustering, molecular groupings with various GLRG expression patterns were identified. LASSO Cox regression analysis was employed to create a prognostic model. Use rich algorithms such as GSEA, GSVA, xCELL ssGSEA, EPIC,CIBERSORT, MCPcounter, ESTIMATE, TIMER, TIDE, and Oncoppredict to analyze functional pathway characteristics of the forecast signal, immune status, anti-tumor therapy, etc. The expression was assessed using Western blot and quantitative real-time PCR techniques. A total of 113 algorithm combinations were combined to screen out the most significant GLRGs in the signature for in vitro experimental verification, such as colony formation, EdU cell proliferation, wound healing, apoptosis, and Transwell assays. RESULTS: A total of 714 GLRGs were found, and 227 of them were identified as prognostic-related genes. And ten GLRGs (AUP1, ESR1, ERLIN2, ASS1, OGDH, BCKDHB, SLC16A1, HK2, LPCAT1 and PGR-AS1) were identified to construct the prognostic model of patients with EC. Based on GLRGs, the risk model's prognosis and independent prognostic value were established. The signature of GLRGs exhibited a robust correlation with the infiltration of immune cells and the sensitivity to drugs. In cytological experiments, we selected HK2 as candidate gene to verify its value in the occurrence and development of EC. Western blot and qRT-PCR revealed that HK2 was substantially expressed in EC cells. According to in vitro experiments, HK2 knockdown can increase EC cell apoptosis while suppressing EC cell migration, invasion, and proliferation. CONCLUSION: The GLRGs signature constructed in this study demonstrated significant prognostic value for patients with endometrial carcinoma, thereby providing valuable guidance for treatment decisions.


Endometrial Neoplasms , Lipid Metabolism , Humans , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Prognosis , Lipid Metabolism/genetics , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation/genetics , Apoptosis/genetics , Cell Line, Tumor , Gene Expression Profiling
3.
Lipids Health Dis ; 23(1): 137, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720280

BACKGROUND: Evidence suggests that hepatocyte mitochondrial dysfunction leads to abnormal lipid metabolism, redox imbalance, and programmed cell death, driving the onset and progression of non-alcoholic steatohepatitis (NASH). Identifying hub mitochondrial genes linked to NASH may unveil potential therapeutic targets. METHODS: Mitochondrial hub genes implicated in NASH were identified via analysis using 134 algorithms. RESULTS: The Random Forest algorithm (RF), the most effective among the 134 algorithms, identified three genes: Aldo-keto reductase family 1 member B10 (AKR1B10), thymidylate synthase (TYMS), and triggering receptor expressed in myeloid cell 2 (TREM2). They were upregulated and positively associated with genes promoting inflammation, genes involved in lipid synthesis, fibrosis, and nonalcoholic steatohepatitis activity scores in patients with NASH. Moreover, using these three genes, patients with NASH were accurately categorized into cluster 1, exhibiting heightened disease severity, and cluster 2, distinguished by milder disease activity. CONCLUSION: These three genes are pivotal mitochondrial genes implicated in NASH progression.


Algorithms , Machine Learning , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Humans , Mitochondria/genetics , Mitochondria/metabolism , Lipid Metabolism/genetics , Aldo-Keto Reductases/genetics , Aldo-Keto Reductases/metabolism , Genes, Mitochondrial
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731931

The hepatic deletion of Rbpjκ (RbpjF/F::AlbCre) in the mouse leads to exhibition of the Alagille syndrome phenotype during early postnatal liver development with hyperlipidemia and cholestasis due to attenuated disruption of NOTCH signaling. Given the roles of NRF2 signaling in the regulation of lipid metabolism and bile ductal formation, it was anticipated that these symptoms could be alleviated by enhancing NRF2 signaling in the RbpjF/F::AlbCre mouse by hepatic deletion of Keap1 in compound Keap1F/F::RbpjF/F::AlbCre mice. Unexpectedly, these mice developed higher hepatic and plasma cholesterol levels with more severe cholestatic liver damage during the pre-weaning period than in the RbpjF/F::AlbCre mice. In addition, hypercholesterolemia and hepatic damage were sustained throughout the growth period unlike in the RbpjF/F::AlbCre mouse. These enhanced abnormalities in lipid metabolism appear to be due to NRF2-dependent changes in gene expression related to cholesterol synthetic and subsequent bile acid production pathways. Notably, the hepatic expression of Cyp1A7 and Abcb11 genes involved in bile acid homeostasis was significantly reduced in Keap1F/F::RbpjF/F::AlbCre compared to RbpjF/F::AlbCre mice. The accumulation of liver cholesterol and the weakened capacity for bile excretion during the 3 pre-weaning weeks in the Keap1F/F::RbpjF/F::AlbCre mice may aggravate hepatocellular damage level caused by both excessive cholesterol and residual bile acid toxicity in hepatocytes. These results indicate that a tuned balance of NOTCH and NRF2 signaling is of biological importance for early liver development after birth.


Hepatomegaly , Hypercholesterolemia , Immunoglobulin J Recombination Signal Sequence-Binding Protein , Kelch-Like ECH-Associated Protein 1 , Liver , Animals , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice , Hypercholesterolemia/genetics , Hypercholesterolemia/metabolism , Hypercholesterolemia/pathology , Liver/metabolism , Liver/pathology , Hepatomegaly/genetics , Hepatomegaly/metabolism , Hepatomegaly/pathology , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Lipid Metabolism/genetics , Gene Deletion , Signal Transduction , Cholesterol/metabolism , Mice, Knockout , Male , Bile Acids and Salts/metabolism
5.
Commun Biol ; 7(1): 532, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710927

Golgin tethers are known to mediate vesicular transport in the secretory pathway, whereas it is relatively unknown whether they may mediate cellular stress response within the cell. Here, we describe a cellular stress response during heat shock stress via SUMOylation of a Golgin tether, Golgin45. We found that Golgin45 is a SUMOylated Golgin via SUMO1 under steady state condition. Upon heat shock stress, the Golgin enters the nucleus by interacting with Importin-ß2 and gets further modified by SUMO3. Importantly, SUMOylated Golgin45 appears to interact with PML and SUMO-deficient Golgin45 mutant functions as a dominant negative for PML-NB formation during heat shock stress, suppressing transcription of lipid metabolism genes. These results indicate that Golgin45 may play a role in heat stress response by transcriptional regulation of lipid metabolism genes in SUMOylation-dependent fashion.


Heat-Shock Response , Lipid Metabolism , Sumoylation , Ubiquitins , Humans , Lipid Metabolism/genetics , Heat-Shock Response/genetics , Gene Expression Regulation , Promyelocytic Leukemia Protein/metabolism , Promyelocytic Leukemia Protein/genetics , HeLa Cells , SUMO-1 Protein/metabolism , SUMO-1 Protein/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , HEK293 Cells , Transcription, Genetic , beta Karyopherins/metabolism , beta Karyopherins/genetics
6.
Sci Rep ; 14(1): 10924, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740866

Bovine intramuscular fat (IMF), commonly referred to as marbling, is regulated by lipid metabolism, which includes adipogenesis, lipogenesis, glycerolipid synthesis, and lipolysis. In recent years, breeding researchers have identified single nucleotide polymorphisms (SNPs) as useful marker-assisted selection tools for improving marbling scores in national breeding programs. These included causal SNPs that induce phenotypic variation. MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that bind to multiple non-coding regions. They are involved in post-transcriptional regulation. Multiple miRNAs may regulate a given target. Previously, three SNPs in the GPAM 3' UTR and four miRNAs were identified through in silico assays. The aim of this study is to verify the binding ability of the four miRNAs to the SNPs within the 3'UTR of GPAM, and to identify the regulatory function of miR-375 in the expression of genes related to lipid metabolism in mammalian adipocytes. It was verified that the four miRNAs bind to the GPAM 3'UTR, and identified that the miR-375 sequence is highly conserved. Furthermore, it was founded that miR-375 upregulated the GPAM gene, C/EBPα, PPARγ and lipid metabolism-related genes and promoted lipid droplet accumulation in 3T3-L1 cells. In conclusion, these results suggest that miR-375 is a multifunctional regulator of multiple lipid metabolism-related genes and may aid in obesity research as a biomarker.


3' Untranslated Regions , 3T3-L1 Cells , Lipid Metabolism , MicroRNAs , Polymorphism, Single Nucleotide , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Lipid Metabolism/genetics , Cattle , Gene Expression Regulation , Adipocytes/metabolism , Adipogenesis/genetics
7.
Front Endocrinol (Lausanne) ; 15: 1383772, 2024.
Article En | MEDLINE | ID: mdl-38715799

Background: ASCVD is the primary cause of mortality in individuals with T2DM. A potential link between ASCVD and T2DM has been suggested, prompting further investigation. Methods: We utilized linear and multivariate logistic regression, Wilcoxon test, and Spearman's correlation toanalyzethe interrelation between ASCVD and T2DM in NHANES data from 2001-2018.The Gene Expression Omnibus (GEO) database and Weighted Gene Co-expression Network Analysis (WGCNA) wereconducted to identify co-expression networks between ASCVD and T2DM. Hub genes were identified using LASSO regression analysis and further validated in two additional cohorts. Bioinformatics methods were employed for gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, along with the prediction of candidate small molecules. Results: Our analysis of the NHANES dataset indicated a significant impact of blood glucose on lipid levels within diabetic cohort, suggesting that abnormal lipid metabolism is a critical factor in ASCVD development. Cross-phenotyping analysis revealed two pivotal genes, ABCC5 and WDR7, associated with both T2DM and ASCVD. Enrichment analyses demonstrated the intertwining of lipid metabolism in both conditions, encompassing adipocytokine signaling pathway, fatty acid degradation and metabolism, and the regulation of adipocyte lipolysis. Immune infiltration analysis underscored the involvement of immune processes in both diseases. Notably, RITA, ON-01910, doxercalciferol, and topiramate emerged as potential therapeutic agents for both T2DM and ASCVD, indicating their possible clinical significance. Conclusion: Our findings pinpoint ABCC5 and WDR7 as new target genes between T2DM and ASCVD, with RITA, ON-01910, doxercalciferol, and topiramate highlighted as promising therapeutic agents.


Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Cardiovascular Diseases/genetics , Cardiovascular Diseases/epidemiology , Male , Middle Aged , Heart Disease Risk Factors , Lipid Metabolism/genetics , Gene Expression
8.
JCI Insight ; 9(9)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38716728

The importance of the proper localization of most receptors at the cell surface is often underestimated, although this feature is essential for optimal receptor response. Endospanin 1 (Endo1) (also known as OBRGRP or LEPROT) is a protein generated from the same gene as the human leptin receptor and regulates the trafficking of proteins to the surface, including the leptin receptor. The systemic role of Endo1 on whole-body metabolism has not been studied so far. Here, we report that general Endo1-KO mice fed a high-fat diet develop metabolically healthy obesity with lipid repartitioning in organs and preferential accumulation of fat in adipose tissue, limited systematic inflammation, and better controlled glucose homeostasis. Mechanistically, Endo1 interacts with the lipid translocase CD36, thus regulating its surface abundance and lipid uptake in adipocytes. In humans, the level of Endo1 transcripts is increased in the adipose tissue of patients with obesity, but low levels rather correlate with a profile of metabolically healthy obesity. We suggest here that Endo1, most likely by controlling CD36 cell surface abundance and lipid uptake in adipocytes, dissociates obesity from diabetes and that its absence participates in metabolically healthy obesity.


Adipose Tissue , CD36 Antigens , Diet, High-Fat , Mice, Knockout , Obesity , Animals , Female , Humans , Male , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , CD36 Antigens/metabolism , CD36 Antigens/genetics , Diet, High-Fat/adverse effects , Glucose/metabolism , Lipid Metabolism/genetics , Mice, Inbred C57BL , Obesity/metabolism , Obesity/genetics
9.
Sci Rep ; 14(1): 10094, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698200

Intramuscular fat (IMF) and backfat thickness (BFT) are critical economic traits impacting meat quality. However, the genetic variants controlling these traits need to be better understood. To advance knowledge in this area, we integrated RNA-seq and single nucleotide polymorphisms (SNPs) identified in genomic and transcriptomic data to generate a linkage disequilibrium filtered panel of 553,581 variants. Expression quantitative trait loci (eQTL) analysis revealed 36,916 cis-eQTLs and 14,408 trans-eQTLs. Association analysis resulted in three eQTLs associated with BFT and 24 with IMF. Functional enrichment analysis of genes regulated by these 27 eQTLs revealed noteworthy pathways that can play a fundamental role in lipid metabolism and fat deposition, such as immune response, cytoskeleton remodeling, iron transport, and phospholipid metabolism. We next used ATAC-Seq assay to identify and overlap eQTL and open chromatin regions. Six eQTLs were in regulatory regions, four in predicted insulators and possible CCCTC-binding factor DNA binding sites, one in an active enhancer region, and the last in a low signal region. Our results provided novel insights into the transcriptional regulation of IMF and BFT, unraveling putative regulatory variants.


Chromatin , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Cattle , Chromatin/genetics , Chromatin/metabolism , Adipose Tissue/metabolism , Mutation , Linkage Disequilibrium , Genome-Wide Association Study , Gene Expression Regulation , Lipid Metabolism/genetics
10.
Clin Transl Med ; 14(5): e1679, 2024 May.
Article En | MEDLINE | ID: mdl-38706045

Metabolic abnormalities represent one of the pathological features of chronic obstructive pulmonary disease (COPD). Glutamic pyruvate transaminase 2 (GPT2) is involved in glutamate metabolism and lipid synthesis pathways, whilst the exact roles of GPT2 in the occurrence and development of COPD remains uncertain. This study aims at investigating how GPT2 and the associated genes modulate smoking-induced airway epithelial metabolism and damage by reprogramming lipid synthesis. The circulating or human airway epithelial metabolomic and lipidomic profiles of COPD patients or cell-lines explored with smoking were assessed to elucidate the pivotal roles of GPT2 in reprogramming processes. We found that GPT2 regulate the reprogramming of lipid metabolisms caused by smoking, especially phosphatidylcholine (PC) and triacylglycerol (TAG), along with changes in the expression of lipid metabolism-associated genes. GPT2 modulated cell sensitivities and survival in response to smoking by enhancing mitochondrial functions and maintaining lipid and energy homeostasis. Our findings provide evidence for the involvement of GPT2 in the reprogramming of airway epithelial lipids following smoking, as well as the molecular mechanisms underlying GPT2-mediated regulation, which may offer an alternative of therapeutic strategies for chronic lung diseases.


Lipidomics , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Lipidomics/methods , Smoking/adverse effects , Smoking/metabolism , Lipid Metabolism/genetics , Male , Female , Metabolomics/methods , Middle Aged
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159491, 2024 Jun.
Article En | MEDLINE | ID: mdl-38565373

Inborn errors of metabolism (IEM) represent a heterogeneous group of more than 1800 rare disorders, many of which are causing significant childhood morbidity and mortality. More than 100 IEM are linked to dyslipidaemia, but yet our knowledge in connecting genetic information with lipidomic data is limited. Stable isotope tracing studies of the lipid metabolism (STL) provide insights on the dynamic of cellular lipid processes and could thereby facilitate the delineation of underlying metabolic (patho)mechanisms. This mini-review focuses on principles as well as technical limitations of STL and describes potential clinical applications by discussing recently published STL focusing on IEM.


Lipid Metabolism , Lipidomics , Humans , Lipidomics/methods , Lipid Metabolism/genetics , Lipid Metabolism, Inborn Errors/metabolism , Lipid Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/genetics , Animals , Lipids/genetics , Isotope Labeling/methods
12.
Aging (Albany NY) ; 16(8): 6868-6882, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38613803

OBJECTIVE: The study aims to examine the involvement of lincRNA00907 in the advancement of non-alcoholic steatohepatitis (NASH). METHODS: The examination was conducted to assess the expression of linc00907 in liver tissues from NASH patients and healthy individuals. High-fat diets induced NASH in mouse models, while palmitic acid/oleic acid treatment was used to create in vitro cell models. Various techniques, such as qRT-PCR, Oil Red O staining and gene knockdown/overexpression, were used to assess the impact of linc00907 on genes related to lipid metabolism and immunity, as well as intracellular lipid accumulation. Furthermore, dual-luciferase reporter assays were carried out to confirm the connection between miRNA-942-5p and linc00907 or TAOK1 mRNA. RESULTS: Linc00907 was found to be significantly upregulated in both NASH patients and NASH mouse models. Overexpression of linc00907 led to an increase in intracellular lipid accumulation, while knockdown of linc00907 resulted in decreased lipid content. It was found that miRNA-942-5p binds with linc00907, and their interaction was confirmed in dual-luciferase reporter assays. Additionally, TAOK1 was predicted to be a downstream target of miRNA-942-5p, and the upregulation of TAOK1 due to linc00907 was reversed by miRNA-942-5p overexpression. linc00907 overexpression reduces apoptosis but can be reversed by TAOK1 knockdown. The reduction of TAOK1 counteracted the impact of linc00907 on gene expression associated with lipid metabolism and immunity, as well as on the accumulation of intracellular lipids. CONCLUSIONS: Our research suggests that linc00907 functions as a competitive endogenous RNA (ceRNA) by sequestering miRNA-942-5p, thus increasing the expression of TAOK1 and encouraging lipid accumulation in hepatocytes, leading to the aggravation of NASH development. Targeting the linc00907/miRNA-942-5p/TAOK1 axis may hold therapeutic potential for the treatment of NASH.


MicroRNAs , Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Animals , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Lipid Metabolism/genetics , Male , Disease Progression , Mice, Inbred C57BL , Disease Models, Animal , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/pathology
13.
Aging (Albany NY) ; 16(8): 7043-7059, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38637111

Osteoarthritis (OA) is a prevalent degenerative condition commonly observed in the elderly, leading to consequential disability. Despite notable advancements made in clinical strategies for OA, its pathogenesis remains uncertain. The intricate association between OA and metabolic processes has yet to receive comprehensive exploration. In our investigation, we leveraged public databases and applied machine learning algorithms, including WGCNA, LASSO, RF, immune infiltration analysis, and pathway enrichment analysis, to scrutinize the role of lipid metabolism-associated genes (LAGs) in the OA. Our findings identified three distinct biomarkers, and evaluated their expression to assess their diagnostic value in the OA patients. The exploration of immune infiltration in these patients revealed an intricate relationship between immune cells and the identified biomarkers. In addition, in vitro experiments, including qRT-PCR, Western blot, chondrocyte lipid droplets detection and mitochondrial fatty acid oxidation measurement, further verified abnormal expressions of selected LAGs in OA cartilage and confirmed the correlation between lipid metabolism and OA.


Biomarkers , Lipid Metabolism , Machine Learning , Osteoarthritis , Humans , Lipid Metabolism/genetics , Osteoarthritis/genetics , Osteoarthritis/immunology , Osteoarthritis/metabolism , Biomarkers/metabolism , Algorithms , Chondrocytes/metabolism , Chondrocytes/immunology
14.
Int J Biol Macromol ; 267(Pt 2): 131240, 2024 May.
Article En | MEDLINE | ID: mdl-38583827

Lipids are intimately related to the unique flavor and nutritional values of goat milk. MicroRNAs (miRNA) participate in the regulation of various biological functions, including the synthesis and degradation of lipids. Several studies have shown that miR-103 is involved in the regulation of lipid metabolism, however, the molecular mechanism by which miR-103 regulates lipid metabolism in goat mammary gland is poorly understood. In this study, miR-103 was knocked out in goat mammary epithelial cells (GMECs) by CRISPR/Cas9, and the accumulation of lipid droplets, triglycerides, and cholesterol in the cells was suppressed subsequently. Overexpression or knockdown of miR-103-5p and miR-103-3p in GMECs revealed that it was miR-103-5p that promoted lipid accumulation but not miR-103-3p. In addition, Pantothenate Kinase 3 (PANK3), the host gene of miR-103, and Phospholipid Scramblase 4 (PLSCR4) were identified as the target genes of miR-103-5p by dual fluorescein and miRNA pulldown. Furthermore, we identified that cellular lipid levels were negatively regulated by PANK3 and PLSCR4. Lastly, in miR-103 knockout GMECs, the knockdown of PANK and PLSCR4 rescued the lipid accumulation. These findings suggest that miR-103-5p promotes lipid accumulation by targeting PLSCR4 and the host gene PANK3 in GMECs, providing new insights for the regulation of goat milk lipids via miRNAs.


Epithelial Cells , Goats , Lipid Metabolism , Mammary Glands, Animal , MicroRNAs , Phosphotransferases (Alcohol Group Acceptor) , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Goats/genetics , Lipid Metabolism/genetics , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Female , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/deficiency , Up-Regulation/genetics , Lipid Droplets/metabolism , Gene Expression Regulation , Triglycerides/metabolism
15.
Int J Biol Macromol ; 267(Pt 1): 131507, 2024 May.
Article En | MEDLINE | ID: mdl-38604419

Vascular endothelial growth factor B (VEGFB), a member of the VEGF family, exhibits limited angiogenic activity in mammals but plays an unexpected role in targeting lipids to peripheral tissues. However, its role in lipid metabolism in fish is unknown. In this study, the vegfb gene was cloned and characterized from spotted sea bass (Lateolabrax maculatus). It encodes 254 amino acids and possesses the typical characteristics of the Vegfb family, demonstrating high homology with those from other vertebrate species. The vegfb gene exhibits the highest expression levels in the liver, followed by the gills, intestine, and adipose tissues in spotted sea bass. In vivo, high-lipid diets decreased vegfb expression and increased lipid deposition in liver of fish. In vitro, palmitic acid + oleic acid treatment or vegfb knockdown significantly increased TG and TC contents, promoting lipid droplet deposition in hepatocytes. Vegfb overexpression has the opposite effects, inhibiting lipid deposition and downregulating fatty acid transport and adipogenesis genes. In contrast, the vegfb knockdown significantly upregulated the expression levels of c/ebpα, plin2, and dgat1 (P < 0.05). These results demonstrate that Vegfb may play an important role in reducing lipid deposition by regulating fatty acid transport and adipogenesis in the hepatocytes of spotted sea bass.


Bass , Lipid Metabolism , Vascular Endothelial Growth Factor B , Animals , Bass/genetics , Bass/metabolism , Lipid Metabolism/genetics , Vascular Endothelial Growth Factor B/metabolism , Vascular Endothelial Growth Factor B/genetics , Cloning, Molecular , Amino Acid Sequence , Phylogeny , Liver/metabolism , Gene Expression Regulation/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Adipogenesis/genetics
16.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 237-241, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678599

We aimed to illustrate the regulatory effect of miR-18 on the onset of non-alcoholic fatty liver disease (NAFLD). MiR-18 level in liver tissues collected from NAFLD patients and mice was detected. In vivo and in vitro influences of miR-18 on biochemical indexes, glucose tolerance and insulin resistance (IR) in NAFLD were determined. H&E staining was conducted to observe hepatic steatosis in NAFLD mice. The downstream target of miR-18 was finally detected by luciferase assay. MiR-18 was upregulated in liver tissues collected from NAFLD patients and mice. Knockdown of miR-18 reduced levels of AST, ALT, TG and TC in NAFLD mice and culture medium of FFA-induced LO2 cells. Meanwhile, knockdown of miR-18 alleviated hepatic steatosis and IR in NAFLD mice. IGF1 was the target of miR-18, and it was negatively regulated by miR-18. MiR-18 is upregulated in NAFLD patients and mice. Knockdown of miR-18 alleviates HFD-induced hepatic steatosis and IR through interacting with IGF1 to regulate to lipid metabolism and insulin signals.


Insulin Resistance , Insulin-Like Growth Factor I , Lipid Metabolism , Liver , Mice, Inbred C57BL , MicroRNAs , Non-alcoholic Fatty Liver Disease , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Animals , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Humans , Lipid Metabolism/genetics , Insulin Resistance/genetics , Male , Liver/metabolism , Liver/pathology , Mice , Insulin/metabolism , Diet, High-Fat , Up-Regulation/genetics , Cell Line , Base Sequence , Signal Transduction , Gene Knockdown Techniques
17.
Lipids Health Dis ; 23(1): 119, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649912

BACKGROUND: Acute pancreatitis (AP) has become a significant global health concern, and a high body mass index (BMI) has been identified as a key risk factor exacerbating this condition. Within this context, lipid metabolism assumes a critical role. The complex relationship between elevated BMI and AP, mediated by lipid metabolism, markedly increases the risk of complications and mortality. This study aimed to accurately define the correlation between BMI and AP, incorporating a comprehensive analysis of the interactions between individuals with high BMI and AP. METHODS: Mendelian randomization (MR) analysis was first applied to determine the causal relationship between BMI and the risk of AP. Subsequently, three microarray datasets were obtained from the GEO database. This was followed by an analysis of differentially expressed genes and the application of weighted gene coexpression network analysis (WGCNA) to identify key modular genes associated with AP and elevated BMI. Functional enrichment analysis was then performed to shed light on disease pathogenesis. To identify the most informative genes, machine learning algorithms, including Random Forest (RF), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Least Absolute Shrinkage and Selection Operator (LASSO), were employed. Subsequent analysis focused on the colocalization of the Quantitative Trait Loci (eQTL) data associated with the selected genes and Genome-Wide Association Studies (GWAS) data related to the disease. Preliminary verification of gene expression trends was conducted using external GEO datasets. Ultimately, the diagnostic potential of these genes was further confirmed through the development of an AP model in mice with a high BMI. RESULTS: A total of 21 intersecting genes related to BMI>30, AP, and lipid metabolism were identified from the datasets. These genes were primarily enriched in pathways related to cytosolic DNA sensing, cytokine‒cytokine receptor interactions, and various immune and inflammatory responses. Next, three machine learning techniques were utilized to identify HADH as the most prevalent diagnostic gene. Colocalization analysis revealed that HADH significantly influenced the risk factors associated with BMI and AP. Furthermore, the trend in HADH expression within the external validation dataset aligned with the trend in the experimental data, thus providing a preliminary validation of the experimental findings.The changes in its expression were further validated using external datasets and quantitative real-time polymerase chain reaction (qPCR). CONCLUSION: This study systematically identified HADH as a potential lipid metabolism-grounded biomarker for AP in patients with a BMI>30.


Body Mass Index , Genome-Wide Association Study , Mendelian Randomization Analysis , Pancreatitis , Quantitative Trait Loci , Humans , Pancreatitis/genetics , Mice , Animals , Biomarkers/blood , Biomarkers/metabolism , Gene Expression Profiling , Transcriptome/genetics , Machine Learning , Lipid Metabolism/genetics , Gene Regulatory Networks , Risk Factors
19.
Lipids Health Dis ; 23(1): 111, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637751

BACKGROUND: Osteoarthritis and lipid metabolism are strongly associated, although the precise targets and regulatory mechanisms are unknown. METHODS: Osteoarthritis gene expression profiles were acquired from the GEO database, while lipid metabolism-related genes (LMRGs) were sourced from the MigSB database. An intersection was conducted between these datasets to extract gene expression for subsequent differential analysis. Following this, functional analyses were performed on the differentially expressed genes (DEGs). Subsequently, machine learning was applied to identify hub genes associated with lipid metabolism in osteoarthritis. Immune-infiltration analysis was performed using CIBERSORT, and external datasets were employed to validate the expression of these hub genes. RESULTS: Nine DEGs associated with lipid metabolism in osteoarthritis were identified. UGCG and ESYT1, which are hub genes involved in lipid metabolism in osteoarthritis, were identified through the utilization of three machine learning algorithms. Analysis of the validation dataset revealed downregulation of UGCG in the experimental group compared to the normal group and upregulation of ESYT1 in the experimental group compared to the normal group. CONCLUSIONS: UGCG and ESYT1 were considered as hub LMRGs in the development of osteoarthritis, which were regarded as candidate diagnostic markers. The effects are worth expected in the early diagnosis and treatment of osteoarthritis.


Lipid Metabolism , Osteoarthritis , Humans , Lipid Metabolism/genetics , Biomarkers , Algorithms , Machine Learning , Osteoarthritis/genetics
20.
Int J Biol Sci ; 20(6): 2219-2235, 2024.
Article En | MEDLINE | ID: mdl-38617542

Nonalcoholic fatty liver disease (NAFLD) is one of the common causes of chronic liver disease in the world. The problem of NAFLD had become increasingly prominent. However, its pathogenesis is still indistinct. As we all know, NAFLD begins with the accumulation of triglyceride (TG), leading to fatty degeneration, inflammation and other liver tissues damage. Notably, structure of nucleoporin 85 (NUP85) is related to lipid metabolism and inflammation of liver diseases. In this study, the results of researches indicated that NUP85 played a critical role in NAFLD. Firstly, the expression level of NUP85 in methionine-choline-deficient (MCD)-induced mice increased distinctly, as well as the levels of fat disorder and inflammation. On the contrary, knockdown of NUP85 had the opposite effects. In vitro, AML-12 cells were stimulated with 2 mm free fatty acids (FFA) for 24 h. Results also proved that NUP85 significantly increased in model group, and increased lipid accumulation and inflammation level. Besides, NUP85 protein could interact with C-C motif chemokine receptor 2 (CCR2). Furthermore, when NUP85 protein expressed at an extremely low level, the expression level of CCR2 protein also decreased, accompanied with an inhibition of phosphorylation of phosphoinositol-3 kinase (PI3K)-protein kinase B (AKT) signaling pathway. What is more, trans isomer (ISRIB), a targeted inhibitor of NUP85, could alleviate NAFLD. In summary, our findings suggested that NUP85 functions as an important regulator in NAFLD through modulation of CCR2.


Non-alcoholic Fatty Liver Disease , Animals , Mice , Lipid Metabolism/genetics , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , Signal Transduction , Receptors, Chemokine , Inflammation
...